Advanced Modern Macroeconomics Savings and Investment

Max Gillman

Cardiff Business School

18 October 2010

Chapter 5: Investment and Savings

Chapter Summary

- Goods output divided between consumption and savings.
- Consumer savings goes to firms which use it for investment.
- Consumer subtracts capital from consumption today
 - to yield more consumption in next period.
 - this defines the capital available to firms for production.
- Makes for capital supply and capital demand.
- Only a two period model; initial output given exogenously.
- All capital used up in production process.
- Intertemporal problem with consumption smoothing across time.

Building on the Last Chapters

- Last chapter on intratemporal substitution: goods, leisure.
- Same tools now for capital theory, intertemporal substitution.
- Instead of goods-leisure choice: consumption today, tomorrow.
- Mathematical form of budget almost identical Part 2.
 - Allocation of time constraint, with given time endowment.
 - now allocation of consumption, investment with given goods endowment.
 - Budget constraint also similar when decentralized:
 - consumption equals labor wages plus profits,
 - now consumption equals capital savings return plus profit.
- Decentralization: marginal product of capital key instead of marginal product of labor.

Learning Objective

- The student conceptualizes how capital is saved and invested
- Key step of intertemporal consumption smoothing,
- Focus on intertemporal margin in simplest framework
- Sets up understanding margin in full dynamic economy.
- See margin as key to determining growth rate of the economy.

Who Made It Happen: Capital Theory

- Adam Smith 1776: output equals current consumption and capital
 - "The general stock of any country ... naturally divides itself into... that portion which is reserved for immediate consumption, and ... fixed capital...and circulating capital... that... affords a revenue or profit.
- Bohm-Bawerk's 1888 The Positive Theory of Capital
- Fisher: 2-period general equilibrium intertemporal optimization,
 - 1896 Appreciation and Interest, 1907 The Rate of Interest, 1930 Theory of Interest,
- Ramsey's 1928 "A Mathematical Theory of Saving"
 - modern general equilibrium capital accumulation over all time.
- Knut Wicksell's 1901 Lectures on Political Economy
 - capital a factor used in production of output, along with only labor.
 - No more classic theory of land, labor, capital as inputs
- Friedman's 1957 Theory of the Consumption Function
 - permanent income hypothesis of consumption, 2-period model.
- Solow 1956 explains economic growth.

Representative Agent Intertemporal Economy

$$MP_k \equiv \frac{\partial f(k_1)}{\partial k_1} = \frac{\frac{\partial u(c_0, c_1)}{\partial c_0}}{\frac{\partial u(c_0, c_1)}{\partial c_1}} \equiv MRS_{c_0, c_1}$$

Log-utility and Cobb-Douglas Production

$$u=\ln c_0+\beta\ln c_1,$$

• $\beta \in (0,1)$ parameter of "time preference".

$$MRS_{c_0,c_1} \equiv \frac{\frac{\partial \ln c_0}{\partial c_0}}{\beta \frac{\partial \ln c_1}{\partial c_1}} = \frac{\frac{1}{c_0}}{\frac{\beta}{c_1}},$$

$$y_t = A_G I_t^{\gamma} k_t^{1-\gamma},$$

ullet $\gamma \in (0,1)$, $I_t=1$, production occurs only at time t=1,

$$y_1=A_Gk_1^{1-\gamma},$$

$$A_G(1-\gamma)k_1^{-\gamma} = \frac{\partial f}{\partial k_1} = \frac{\frac{\partial u(c_0,c_1)}{\partial c_0}}{\beta \frac{\partial u(c_0,c_1)}{\partial c_1}} = \frac{\frac{1}{c_0}}{\frac{\beta}{c_1}},\tag{1}$$

Example 5.1

- Target a reasonable growth rate in consumption of 2.5%.
- Assume $\beta = 0.98$, $\gamma = 0.5$, $A_G = 12$, $y_0 = 100$.

$$u = \ln c_0 + (0.98) \ln c_1,$$
 (2)
 $c_1 = y_1 = 12\sqrt{k_1}.$
 $100 = c_0 + k_1.$

$$\operatorname{Max}_{k_1} u(c_0, c_1) = \ln (100 - k_1) + (0.98) \ln (12\sqrt{k_1}).$$

$$-\frac{1}{100 - k_1} + \frac{(0.98)(0.5)12k_1^{-0.5}}{12k_1^{0.5}} = 0.$$
(3)

Equilibrium Solution

$$k_1 = \frac{(98)(0.5)}{1 + (.98)(0.5)} = 32.886.$$
 (4)

$$c_1 = 12\sqrt{32.886} = 68.816,\tag{5}$$

$$c_0 = 100 - 32.886 = 67.114. (6)$$

$$1+g\equiv\frac{c_1}{c_0}=\frac{68.82}{67.11}=1.0255,$$

• g = 0.0255, or about 2.55%.

$$u = \ln 67.114 + (0.98) \ln (68.816) = 8.3532.$$
 (7)

$$c_1 = \left(\frac{e^u}{c_0}\right)^{\frac{1}{\beta}} = \left(\frac{e^{8.3532}}{c_0}\right)^{\frac{1}{0.98}}.$$
 (8)

$$c_1 = 12\sqrt{k_1} = 12\sqrt{100 - c_0}. (9)$$

Graphically

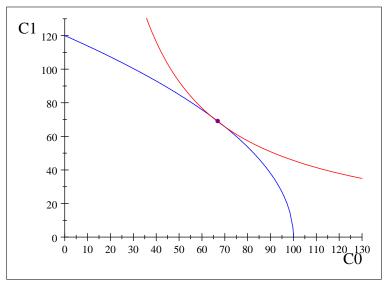


Figure 5.1. Intertemporal Consumption and Investment in Example 5.1.

Productivity Change: Example 5.2

$$\beta=$$
 0.98, $\gamma=$ 0.5, and A_G doubles to 24 from 12 : $c_1=y_1=24\sqrt{k_1}$.

$$\begin{aligned}
& \underset{k_1}{\text{Max}} u = \ln (100 - k_1) + (0.98) \ln \left(24\sqrt{k_1} \right). \\
& -\frac{1}{100 - k_1} + \frac{(0.98)(0.5)24k_1^{-0.5}}{24k_1^{0.5}} = 0.
\end{aligned} \tag{10}$$

Same solution for capital k_1 :

$$k_1 = \frac{(98)(0.5)}{1 + (.98)(0.5)} = 32.89.$$

But next period consumption doubles:

$$c_1 = 24\sqrt{32.89} = 137.64.$$

Current consumption the same

$$c_0 = 100 - 32.89 = 67.11.$$

Utility rises

 $u = \ln 67.11 + (0.98) \ln (137.64) = 9.03$

Productivity Doubles

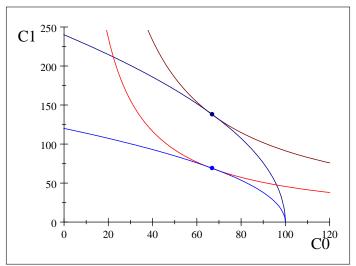


Figure 5.2. Intertemporal Consumption with Doubling of Productivity in Example 5.2.

Offsetting Income and Substitution Effects

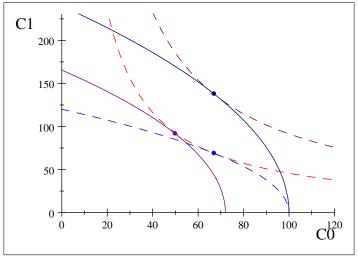


Figure 5.3. Substitution Effect from Doubling of Capital Productivity in Example 5.2.

Decentralized Consumer and Firm Problems

- Lend out k_1 this period, get (1+r) k_1 next period: capital plus interest.
- Market clearing

$$k_1^s = k_1^d,$$
 (11) $c_1^d = c_1^s = y_1.$

$$u = \ln c_0^d + \beta \ln c_1^d,$$

$$c_0^d = y_0 - k_1^s.$$
(12)

$$c_1^d = \Pi_1 + k_1^s (1+r). (13)$$

Wealth Constraint Form of Budget Constraints

0

$$\frac{c_1^d}{1+r} = \frac{\Pi_1}{1+r} + k_1^s;$$

$$k_1^s = y_0 - c_0^d;$$

$$c_0^d + \frac{c_1^d}{1+r} = y_0 + \frac{\Pi_1}{1+r}.$$

• With Π_1 next period income, wealth W:

$$W \equiv y_0 + \frac{\Pi_1}{1+r} = c_0^d + \frac{c_1^d}{1+r}.$$
 (14)

- Present discounted value of income equals discounted value of consumption
- Use either wealth constraint or two budget constraints

Consumer Problem

$$\max_{c_0, c_1, k_1^s} u = \ln c_0^d + \beta \ln c_1^d
c_0^d = y_0 - k_1^s,$$
(15)

$$c_1^d = \Pi_1 + k_1^s (1+r).$$
 (16)

$$\max_{k_1^s} u = \ln (y_0 - k_1^s) + \beta \ln [\Pi_1 + (1+r) k_1^s].$$

$$\frac{\beta (1+r)}{\Pi_1 + k_1^s (1+r)} - \left(\frac{1}{y_0 - k_1^s}\right) = 0.$$

$$k_1^s = \frac{y_0 \beta}{1+\beta} - \frac{\Pi_1}{(1+\beta)(1+r)}.$$
(17)

Firm Problem

$$\max_{k_1^d} \Pi_1 = y_1 - (1+r) k_1^d,$$

$$y_1 = f(k_1^d) = A_G \left(k_1^d\right)^{1-\gamma}.$$

$$\max_{k_1^d} \Pi_1 = A_G \left(k_1^d \right)^{1-\gamma} - (1+r) k_1^d.$$
 (18)

$$\frac{\partial f(k_1^d)}{\partial k_1^d} = (1 - \gamma) A_G \left(k_1^d\right)^{-\gamma} = 1 + r. \tag{19}$$

Example 5.3: Firm

$$A_G=12$$
, $\gamma=0.5$, $y_0=100$, $\beta=0.98$:

$$y_1 = 12 \left(k_1^d \right)^{0.5}$$
;

$$(0.5)\,12\left(k_1^d\right)^{-0.5}=1+r.\tag{20}$$

$$k_1^d = \frac{36}{(1+r)^2}. (21)$$

$$\Pi_1 = 12\sqrt{\frac{36}{(1+r)^2} - \frac{36(1+r)}{(1+r)^2}} = \frac{36}{1+r}.$$
 (22)

$$y_1 = 12\sqrt{\frac{36}{(1+r)^2}} = \frac{72}{1+r}.$$
 (23)

Example 5.3: Capital Market Equilibrium

$$k_1^s = \frac{y_0 \beta}{1+\beta} - \frac{\Pi_1}{(1+\beta)(1+r)} = \frac{y_0 \beta}{1+\beta} - \left(\frac{1}{1+\beta}\right) \frac{36}{(1+r)^2}.$$
 (24)

$$k_1^d = \frac{36}{(1+r)^2} = \frac{y_0 \beta}{1+\beta} - \left(\frac{1}{1+\beta}\right) \frac{36}{(1+r)^2} = k_1^s.$$
 (25)

$$r = \sqrt{\frac{36(2+\beta)}{y_0\beta}} - 1 = \sqrt{\frac{36(2.98)}{98}} - 1 = 0.0463.$$
 (26)

$$k_1^d = \frac{36}{(1+r)^2} = \frac{36}{(1.0463)^2} = 32.89;$$

$$k_1^s = \frac{98}{1.98} - \left(\frac{1}{1.98}\right) \frac{36}{(1.0463)^2} = 32.89.$$

$$1 + r = \frac{6}{(k_1^d)^{0.5}}, \ 1 + r = \frac{6}{(y_0\beta - (1+\beta)k_1^s)^{0.5}}$$

(27)

Example 5.3: Rest of Equilibrium

$$y_1 = \frac{72}{1+r} = \frac{72}{1.0463} = 68.81. \tag{28}$$

$$\Pi_1 = \frac{36}{1+r} = \frac{36}{1.0463} = 34.41. \tag{29}$$

$$c_0^d = 100 - k_1^s = 67.12. (30)$$

$$y_1 = c_1^d = \Pi_1 + k_1^s (1+r) = 34.41 + 32.88 (1.0463) = 68.81.$$
 (31)

$$1+g=\frac{c_1}{c_0}=\frac{68.82}{67.11}=1.0255,$$

 $u = \ln 67.12 + 0.98 \ln 68.81 = 8.35.$

• Savings rate: $\frac{k_1}{y_0} = \frac{32.88}{100}$, or 33%.

Example 5.3: Capital Market Graph

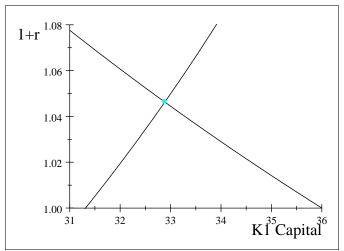


Figure 5.4. Savings and Investment: Aggregate Supply and Demand for Capital in Example 5.3.

Goods Market

$$c_0 = y_0 - k_1^s = 50.51 + \frac{18.18}{(1+r)^2}.$$

$$c_1^d = \Pi_1 + k_1^s (1+r) = 49.49 (1+r) + \frac{17.82}{1+r}.$$

$$c_1^s = y_1 = \frac{72}{1+r}.$$

$$u = \ln 67.12 + (0.98) \ln 68.81 = 8.35.$$
(32)

$$\frac{1}{1+r} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{c_1^d \pm \sqrt{(c_1^d)^2 - 4(17.82)(49.49)}}{2(17.82)}.$$
 (34)

$$\frac{1}{1+r} = \frac{c_1^s}{72}. (35)$$

Future Goods Market Graphically

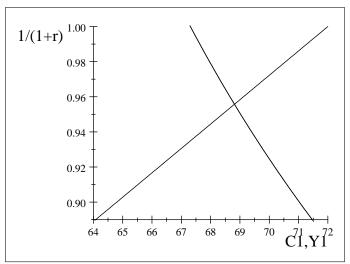


Figure 5.5. Market for Future Period Consumption in Example 5.3.

General Equilibrium: Add Budget Line

$$c_1^d = \Pi_1 + k_1^s (1+r) = \frac{36}{1.0463} + (100 - c_0) (1.0463).$$

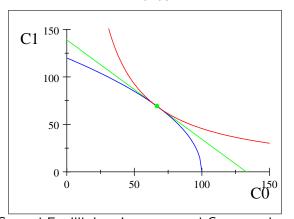


Figure 5.6. General Equilibrium Intertemporal Consumption with Market Line in Example 5.3.

Example 5.4: Productivity Increase by 5%

$$\gamma = 0.5$$
, $y_0 = 100$, $\beta = 0.98$; A_G : up by 5% to $12(1.05) = 12.6$

$$\max_{k_1^d} \Pi_1 = 12.6 \sqrt{k_1^d} - (1+r)k_1^d, \tag{36}$$

$$k_1^d = \frac{39.69}{(1+r)^2}, \Pi_1 = \frac{39.69}{1+r}, y_1 = \frac{79.38}{1+r}.$$
 (37)

$$1 + r = \sqrt{\frac{39.69}{k_1^d}}. (38)$$

$$k_1^s = 49.49 - \frac{20.045}{(1+r)^2}, \ 1+r = \sqrt{\frac{20.045}{49.49 - k_1^s}}.$$
 (39)

$$k_1^s = 49.49 - \frac{20.045}{(1+r)^2} = \frac{39.69}{(1+r)^2} = k_1^d.$$

$$1 + r = \sqrt{\frac{(39.69 + 20.045)}{49.49}} = 1.0986,$$

Graphical Capital Market: No Change in Capital

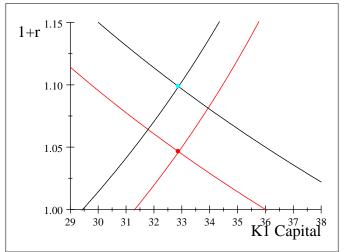


Figure 5.7. Shift in Supply and Demand for Capital from a Productivity Increase in Example 5.4.

Future Goods Market

$$c_1^d = 49.49(1+r) + \frac{19.645}{1+r}.$$
 (40)

$$\frac{1}{1+r} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{c_1^d \pm \sqrt{(c_1^d)^2 - 4(19.6)(49.5)}}{2(19.645)}.$$
 (41)

$$c_1^s = \frac{79.38}{1+r},$$

$$\frac{1}{1+r} = \frac{c_1^s}{79.38}.$$
(42)

Future Goods Market Graphically: Output Rises

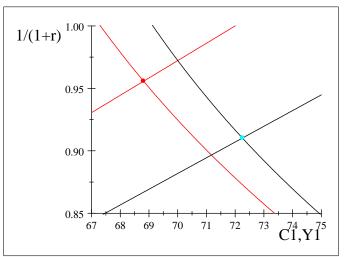


Figure 5.8. Market for Future Period Consumption with 5% Productivity Increase in Example 5.4 (black) versus Example 5.3 (red).

Current Period Income Endowment: Example 5.5

• y_0 rise by 5% to 105, all other parameters at baseline.

$$k_1 = \frac{105 (0.98) (0.5)}{1 + (0.98) (0.5)} = 34.53.$$

• Savings rate the same:

$$\frac{k_1}{y_0} = \frac{34.53}{105} = 0.3289.$$

• But capital investment rises.

$$c_0 = 105 - 34.53 = 70.47.$$

$$c_1^s = y_1 = 12\sqrt{k_1} = 12(34.53)^{0.5} = 70.52,$$

Lower growth rate near to zero:

$$g = \frac{c_1}{c_0} - 1 = \frac{70.52}{70.47} - 1 = 0.0007.$$

Utility Level Curves and Production Possibility Curves

$$u = \ln (105 - k_1) + (0.98) \ln \left(12\sqrt{k_1}\right),$$

$$u = \ln (105 - 34.53) + (0.98) \ln \left(12\sqrt{34.53}\right) = 8.4259,$$

$$c_1^d = \left(\frac{e^u}{c_0}\right)^{\frac{1}{\beta}} = \left(\frac{e^{8.4259}}{c_0}\right)^{\frac{1}{0.98}}.$$

$$c_1^s = 12\sqrt{k_1} = 12\sqrt{105 - c_0}.$$

$$(43)$$

General Equilibrium Graph: Goods Endowment Increase

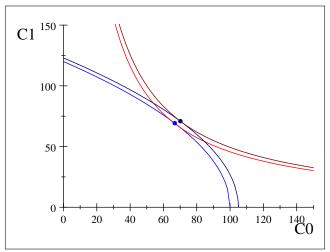


Figure 5.9. General Equilibrium Intertemporal Consumption with Current Income Increase in Example 5.5 (dark red and blue) compared to Example

Decentralized Problem

$$k_1^s = \frac{1}{1.98} \left[105 (0.98) - \frac{36}{(1+r)^2} \right],$$
 (44)

$$1+r = \left(\frac{36}{105(0.98)-1.98k_1^s}\right)^{0.5}. (45)$$

$$k_1^s = \frac{1}{1.98} \left[105 (0.98) - \frac{36}{(1+r)^2} \right] = \frac{36}{(1+r)^2} = k_1^d;$$
 (46)

$$1+r = \left[\frac{36}{\frac{102.9}{1.98}}\left(1+\frac{1}{1.98}\right)\right]^{0.5} = 1.021; \tag{47}$$

$$k_1^d = \frac{36}{(1+r)^2} = \frac{36}{(1.021)^2} = 34.534.$$
 (48)

Capital Market Graph: Current Goods Endowment Increase

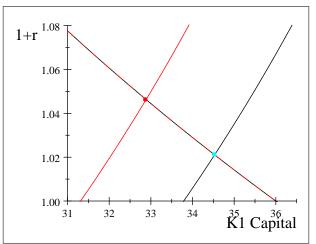


Figure 5.10. An Increase in Current Income Endowment in Example 5.5.

Future Goods Market

$$c_1^d = \frac{36}{1+r} + \left(\frac{105(0.98)}{1.98} - \frac{36}{1.98(1+r)^2}\right)(1+r),$$
 (49)

$$\frac{1}{1+r} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{c_1^d \pm \sqrt{(c_1^d)^2 - 4(17.82)(52)}}{2(17.818)}.$$
 (50)

$$\frac{1}{1+r} = \frac{c_1^s}{72}. (51)$$

Future Goods Market Graph: Output Rises, Interest Rate Falls

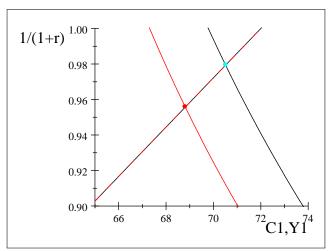


Figure 5.11. Market for Future Period Consumption in Example 5.3.

General Equilibrium Graph: Add Budget Lines

$$c_1^d = \Pi_1 + k_1^s (1+r) = \frac{36}{1.021} + (105 - c_0) (1.021);$$

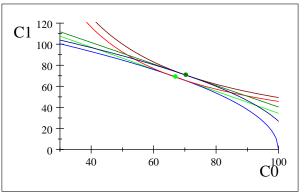


Figure 5.12. General Equilibrium with Income Endowment Increase in Example 5.5 (darker red, blue, green) Compared to Example 5.3 (lighter red, blue, green).

Applications: Savings Rate, Permanent Income, Debt Crisis

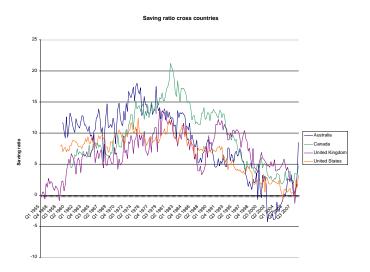


Figure: Figure 5.13. Savings Ratios, 1955-2007, Australia, Canada, UK and US.

Explaining Low Savings Rates

- Low savings rate policy issue if concern of consequences.
- May be consequence of "wealth effect",
 - a result of rising permanent income stream.
 - Market equity in corporations, homes, shot up in 1990s,
 - seemed that permanent income was rising.
 - As permanent income expected to rise more, less savings needed.
- A theory based on expected permanent income, not current income.
- "the permanent income hypothesis of consumption".
- Implies low savings rate not at a worry in policy sense,
 - if expectations of rising permanent income are realized.
 - Dark underside to recent fall in savings rate:
 - many houses bought by borrowing money: higher expected wealth.
 - Collapse in stock market value 2007-2008 collapsed this wealth.
 - Many houses foreclosed and repossessed by banks.
- Simple economic response to rising wealth, a low savings rate, became urgent policy issue once wealth collapsed and debt could not be repaid.